NAG C Library Function Document nag_pde_interp_1d_coll (d03pyc)

1 Purpose

nag_pde_interp_1d_coll (d03pyc) may be used in conjunction with either nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc). It computes the solution and its first derivative at user-specified points in the spatial co-ordinate.

2 Specification

3 Description

nag_pde_interp_1d_coll (d03pyc) is an interpolation function for evaluating the solution of a system of partial differential equations (PDEs), or the PDE components of a system of PDEs with coupled ordinary differential equations (ODEs), at a set of user-specified points. The solution of a system of equations can be computed using nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc) on a set of mesh points; nag_pde_interp_1d_coll (d03pyc) can then be employed to compute the solution at a set of points other than those originally used in nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc). It can also evaluate the first derivative of the solution. Polynomial interpolation is used between each of the break-points $\mathbf{xbkpts}[i-1]$, for $i=1,2,\ldots,\mathbf{nbkpts}$. When the derivative is needed ($\mathbf{itype}=2$), the array $\mathbf{xp}[\mathbf{intpts}-1]$ must not contain any of the break-points, as the method, and consequently the interpolation scheme, assumes that only the solution is continuous at these points.

4 References

None.

5 Parameters

Note: the parameters **u**, **npts**, **npde**, **xbkpts**, **nbkpts**, **rsave** and **lrsave** must be supplied unchanged from either nag pde parab 1d coll (d03pdc) or nag pde parab 1d coll ode (d03pjc).

1: **npde** – Integer Input

On entry: the number of PDEs.

Constraint: $npde \ge 1$.

2: $\mathbf{u}[\mathbf{npde} \times \mathbf{npts}] - \text{const double}$

Input

Note: where U(i, j) appears in this document it refers to the array element $\mathbf{u}[\mathbf{npde} \times (j-1) + i - 1]$. We recommend using a #define to make the same definition in your calling program.

On entry: the PDE part of the original solution returned in the parameter **u** by the function nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

3: **nbkpts** – Integer Input

On entry: the number of break-points.

Constraint: $\mathbf{nbkpts} \geq 2$.

[NP3645/7] d03pyc.1

4: **xbkpts**[**nbkpts**] – const double

Input

On entry: $\mathbf{xbkpts}[i-1]$, for $i=1,2,\ldots,\mathbf{nbkpts}$, must contain the break-points as used by nag pde parab 1d coll (d03pdc) or nag pde parab 1d coll ode (d03pjc).

Constraint: xbkpts[0] < xbkpts[1] < ... < xbkpts[nbkpts - 1].

5: **npoly** – Integer

Input

On entry: the degree of the Chebyshev polynomial used for approximation as used by nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

Constraint: $1 \le \mathbf{npoly} \le 49$.

6: **npts** – Integer

Input

On entry: the number of mesh points as used by nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

Constraint: $npts = (nbkpts - 1) \times npoly + 1$.

7: xp[intpts] – const double

Input

On entry: xp[i-1], for $i=1,2,\ldots$, intpts, must contain the spatial interpolation points.

Constraint: $xbkpts[0] \le xp[0] < xp[1] < ... < xp[intpts - 1] \le xbkpts[nbkpts - 1]$.

When itype = 2, $xp[i-1] \neq xbkpts[j-1]$, for i = 1, 2, ..., intpts; j = 2, 3, ..., nbkpts - 1.

8: **intpts** – Integer

Input

On entry: the number of interpolation points.

Constraint: intpts ≥ 1 .

9: **itype** – Integer

Input

On entry: specifies the interpolation to be performed.

If itype = 1, the solution at the interpolation points are computed. If itype = 2, both the solution and the first derivative at the interpolation points are computed.

Constraint: **itype** = 1 or 2.

10: $\mathbf{up}[\mathbf{npde} \times \mathbf{intpts} \times \mathbf{itype}] - \mathbf{double}$

Output

Note: where $\mathbf{UP}(i,j,k)$ appears in this document it refers to the array element $\mathbf{up}[\mathbf{npde} \times (\mathbf{intpts} \times (k-1)+j-1)+i-1]$. We recommend using a #define to make the same definition in your calling program.

On exit: if **itype** = 1, **UP**(i, j, 1), contains the value of the solution $U_i(x_j, t_{\text{out}})$, at the interpolation points $x_i = \mathbf{xp}[j-1]$, for $j = 1, 2, ..., \mathbf{intpts}$; $i = 1, 2, ..., \mathbf{npde}$.

If **itype** = 2, $\mathbf{UP}(i, j, 1)$ contains $U_i(x_j, t_{\text{out}})$ and $\mathbf{UP}(i, j, 2)$ contains $\frac{\partial U_i}{\partial x}$ at these points.

11: rsave[lrsave] - double

Input/Output

On entry: the array **rsave** as returned by nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc). The contents of **rsave** must not be changed from the call to nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

12: **Irsave** – Integer

Input

On entry: the size of the workspace **rsave**, as in nag_pde_parab_1d_coll (d03pdc) or nag_pde_parab_1d_coll_ode (d03pjc).

d03pyc.2 [NP3645/7]

13: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

```
On entry, itype is not equal to 1 or 2, itype = \langle value \rangle.
O n entry, intpts \leq 0: intpts = \langle value \rangle.
On entry, npoly = \langle value \rangle.
Constraint: npoly > 0.
On entry, nbkpts = \langle value \rangle.
Constraint: nbkpts > 2.
```

Constraint. Hokpts > 2.

On entry, **npde** = $\langle value \rangle$. Constraint: **npde** > 0.

NE_INT_3

On entry, **npts** is not equal to $(\mathbf{nbkpts} - 1) \times \mathbf{npoly} + 1$: $\mathbf{npts} = \langle value \rangle$, $\mathbf{nbkpts} = \langle value \rangle$, $\mathbf{npoly} = \langle value \rangle$.

NE EXTRAPOLATION

Extrapolation is not allowed.

NE_INCOMPAT_PARAM

On entry, **itype** = 2 and at least one interpolation point coincides with a break-point i.e., interpolation point no $\langle value \rangle$ with value $\langle value \rangle$ is close to break-point $\langle value \rangle$ with value $\langle value \rangle$.

NE NOT STRICTLY INCREASING

```
On entry, interpolation points xp badly ordered: \mathbf{i} = \langle value \rangle, \mathbf{xp}[i-1] = \langle value \rangle, \mathbf{xp}[j-1] = \langle value \rangle.
```

On entry, break points **xbkpts** badly ordered: $i = \langle value \rangle$, **xbkpts** $[i-1] = \langle value \rangle$, **xbkpts** $[j-1] = \langle value \rangle$.

NE BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

See the documents for nag pde parab 1d coll (d03pdc) or nag pde parab 1d coll ode (d03pjc).

8 Further Comments

None.

9 Example

See Section 9 of the document for nag pde parab 1d coll (d03pdc).

[NP3645/7] d03pyc.3 (last)